Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The reproduction number of COVID-19 and its correlation with public health interventions.

Identifieur interne : 000199 ( Main/Exploration ); précédent : 000198; suivant : 000200

The reproduction number of COVID-19 and its correlation with public health interventions.

Auteurs : Kevin Linka [États-Unis] ; Mathias Peirlinck [États-Unis] ; Ellen Kuhl [États-Unis]

Source :

RBID : pubmed:32836597

Abstract

Throughout the past six months, no number has dominated the public media more persistently than the reproduction number of COVID-19. This powerful but simple concept is widely used by the public media, scientists, and political decision makers to explain and justify political strategies to control the COVID-19 pandemic. Here we explore the effectiveness of political interventions using the reproduction number of COVID-19 across Europe. We propose a dynamic SEIR epidemiology model with a time-varying reproduction number, which we identify using machine learning. During the early outbreak, the basic reproduction number was 4.22 ± 1.69, with maximum values of 6.33 and 5.88 in Germany and the Netherlands. By May 10, 2020, it dropped to 0.67 ± 0.18, with minimum values of 0.37 and 0.28 in Hungary and Slovakia. We found a strong correlation between passenger air travel, driving, walking, and transit mobility and the effective reproduction number with a time delay of 17.24 ± 2.00 days. Our new dynamic SEIR model provides the flexibility to simulate various outbreak control and exit strategies to inform political decision making and identify safe solutions in the benefit of global health.

DOI: 10.1007/s00466-020-01880-8
PubMed: 32836597
PubMed Central: PMC7385940


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The reproduction number of COVID-19 and its correlation with public health interventions.</title>
<author>
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32836597</idno>
<idno type="pmid">32836597</idno>
<idno type="doi">10.1007/s00466-020-01880-8</idno>
<idno type="pmc">PMC7385940</idno>
<idno type="wicri:Area/Main/Corpus">000398</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000398</idno>
<idno type="wicri:Area/Main/Curation">000398</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000398</idno>
<idno type="wicri:Area/Main/Exploration">000398</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The reproduction number of COVID-19 and its correlation with public health interventions.</title>
<author>
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Department of Mechanical Engineering, Stanford University, Stanford</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Computational mechanics</title>
<idno type="ISSN">0178-7675</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Throughout the past six months, no number has dominated the public media more persistently than the reproduction number of COVID-19. This powerful but simple concept is widely used by the public media, scientists, and political decision makers to explain and justify political strategies to control the COVID-19 pandemic. Here we explore the effectiveness of political interventions using the reproduction number of COVID-19 across Europe. We propose a dynamic SEIR epidemiology model with a time-varying reproduction number, which we identify using machine learning. During the early outbreak, the basic reproduction number was 4.22 ± 1.69, with maximum values of 6.33 and 5.88 in Germany and the Netherlands. By May 10, 2020, it dropped to 0.67 ± 0.18, with minimum values of 0.37 and 0.28 in Hungary and Slovakia. We found a strong correlation between passenger air travel, driving, walking, and transit mobility and the effective reproduction number with a time delay of 17.24 ± 2.00 days. Our new dynamic SEIR model provides the flexibility to simulate various outbreak control and exit strategies to inform political decision making and identify safe solutions in the benefit of global health.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32836597</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0178-7675</ISSN>
<JournalIssue CitedMedium="Print">
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>28</Day>
</PubDate>
</JournalIssue>
<Title>Computational mechanics</Title>
<ISOAbbreviation>Comput Mech</ISOAbbreviation>
</Journal>
<ArticleTitle>The reproduction number of COVID-19 and its correlation with public health interventions.</ArticleTitle>
<Pagination>
<MedlinePgn>1-16</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00466-020-01880-8</ELocationID>
<Abstract>
<AbstractText>Throughout the past six months, no number has dominated the public media more persistently than the reproduction number of COVID-19. This powerful but simple concept is widely used by the public media, scientists, and political decision makers to explain and justify political strategies to control the COVID-19 pandemic. Here we explore the effectiveness of political interventions using the reproduction number of COVID-19 across Europe. We propose a dynamic SEIR epidemiology model with a time-varying reproduction number, which we identify using machine learning. During the early outbreak, the basic reproduction number was 4.22 ± 1.69, with maximum values of 6.33 and 5.88 in Germany and the Netherlands. By May 10, 2020, it dropped to 0.67 ± 0.18, with minimum values of 0.37 and 0.28 in Hungary and Slovakia. We found a strong correlation between passenger air travel, driving, walking, and transit mobility and the effective reproduction number with a time delay of 17.24 ± 2.00 days. Our new dynamic SEIR model provides the flexibility to simulate various outbreak control and exit strategies to inform political decision making and identify safe solutions in the benefit of global health.</AbstractText>
<CopyrightInformation>© Springer-Verlag GmbH Germany, part of Springer Nature 2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Linka</LastName>
<ForeName>Kevin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</Affiliation>
<Identifier Source="GRID">grid.168010.e</Identifier>
<Identifier Source="ISNI">0000000419368956</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Peirlinck</LastName>
<ForeName>Mathias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</Affiliation>
<Identifier Source="GRID">grid.168010.e</Identifier>
<Identifier Source="ISNI">0000000419368956</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuhl</LastName>
<ForeName>Ellen</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Mechanical Engineering, Stanford University, Stanford, CA USA.</Affiliation>
<Identifier Source="GRID">grid.168010.e</Identifier>
<Identifier Source="ISNI">0000000419368956</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>U01 HL119578</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Comput Mech</MedlineTA>
<NlmUniqueID>9883520</NlmUniqueID>
<ISSNLinking>0178-7675</ISSNLinking>
</MedlineJournalInfo>
<CommentsCorrectionsList>
<CommentsCorrections RefType="UpdateOf">
<RefSource>medRxiv. 2020 Jul 07;:</RefSource>
<PMID Version="1">32676611</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Epidemiology</Keyword>
<Keyword MajorTopicYN="N">Machine learning</Keyword>
<Keyword MajorTopicYN="N">Reproduction number</Keyword>
<Keyword MajorTopicYN="N">SEIR model</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32836597</ArticleId>
<ArticleId IdType="doi">10.1007/s00466-020-01880-8</ArticleId>
<ArticleId IdType="pii">1880</ArticleId>
<ArticleId IdType="pmc">PMC7385940</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Lancet Glob Health. 2020 Apr;8(4):e488-e496</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32119825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Jun;95:311-315</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32234343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 May;20(5):e102-e107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32145768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Mar 27;367(6485):1436</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32217720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Aug;584(7820):257-261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32512579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 1984 Oct 21;110(4):665-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6521486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>NPJ Digit Med. 2019 Nov 25;2:115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31799423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epidemiol Rev. 1993;15(2):265-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8174658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Rep. 2020 Feb 24;12(1):8516</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32201554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 2020 Mar 13;27(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32052846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Jun 27;395(10242):1973-1987</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32497510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Travel Med. 2020 Mar 13;27(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32052841</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Public Health. 2020 May;5(5):e261-e270</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32220655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Methods Biomech Biomed Engin. 2020 Aug;23(11):710-717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32367739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomech Model Mechanobiol. 2020 Apr 27;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32342242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2020 Jul;26(7):1470-1477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32255761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 26;382(13):1199-1207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31995857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Emerg Infect Dis. 2019 Jan;25(1):1-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30560777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Stat Methods Med Res. 1993;2(1):23-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8261248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1982 Feb 26;215(4536):1053-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7063839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Med Virol. 2020 Jun;92(6):645-659</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32141624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Methods Appl Mech Eng. 2019 May 1;348:313-333</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32863454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Intern Med. 2020 May 5;172(9):577-582</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32150748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Math Biol. 2019 Aug;81(8):3219-3244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30242633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Mar 26;382(13):1268-1269</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32109011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Infect Dis. 2014 Sep 04;14:480</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25186370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Mar;92:214-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32007643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2002 Nov-Dec;180:29-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12387915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2019 Aug 30;16(157):20190233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31431183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Infect Dis. 2020 Feb;91:264-266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31953166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 1995 Feb;125(2):155-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881192</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Euro Surveill. 2020 Apr;25(13):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32265005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomech Model Mechanobiol. 2019 Dec;18(6):1987-2001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31240511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2020 Jul;17(168):20200144</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32693748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Apr 24;368(6489):395-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32144116</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Linka, Kevin" sort="Linka, Kevin" uniqKey="Linka K" first="Kevin" last="Linka">Kevin Linka</name>
</region>
<name sortKey="Kuhl, Ellen" sort="Kuhl, Ellen" uniqKey="Kuhl E" first="Ellen" last="Kuhl">Ellen Kuhl</name>
<name sortKey="Peirlinck, Mathias" sort="Peirlinck, Mathias" uniqKey="Peirlinck M" first="Mathias" last="Peirlinck">Mathias Peirlinck</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000199 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000199 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32836597
   |texte=   The reproduction number of COVID-19 and its correlation with public health interventions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32836597" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021